Math 4550
Topic 6- Normal subgroups
and Factor groups

Def: Let G be a group and H < G. Let g ∈ G. The left coset of H containing g is gH = {gh | heH} The right coset of H containing g is Hy= {hg|heH} The set of all left cosets is 6/H = { 9H | 9E G } I read this as " G mod H"

Ex:
$$D_6 = \{1, r, r^2, s, sr, sr^2\}$$

 $H = \langle r \rangle = \{1, r, r^2\}$ $r^3 = 1, s^2 = 1$

left cosets:

There are two left cosets:

$$1H = \{1.1, 1.r, 1.r^2\} = \{1, r, r^2\} = H$$
 $rH = \{r.1, r.r, r.r^2\} = \{r, r^2, 1\} = H$
 $r^2H = \{r^2.1, r^2.r, r^2.r^2\} = \{r, r^2, 1, r^3\} = H$
 $sH = \{s.1, s.r, s.r, s.r^2\} = \{s.s, s.r, s.r^2\}$
 $sH = \{s.1, s.r, s.r, s.r^2\} = \{s.r, s.r^2\}$
 $srH = \{s.r.1, s.r, s.r, s.r^2\} = \{s.r, s.r^2\}$

There are two left cosets:

 $\{1, r, r^2\} = H = rH = r^2H$
 $\{s, s.r, s.r^2\} = sH = s.rH = s.r^2H$

right cosets:

$$H1 = \{1.1, r.1, r^2.1\} = \{1, r, r^2\}$$

$$Hr = \{1.r, r.r, r^2, r^2\} = \{r, r^2, 1\}$$

$$Hr^2 = \{1.r^2, r.r^2, r^2r^2\} = \{r, r^2, 1, r^3\}$$

$$Hs = \{1.r^2, r.r^2, r^2r^2\} = \{s, sr^2, sr^3\}$$

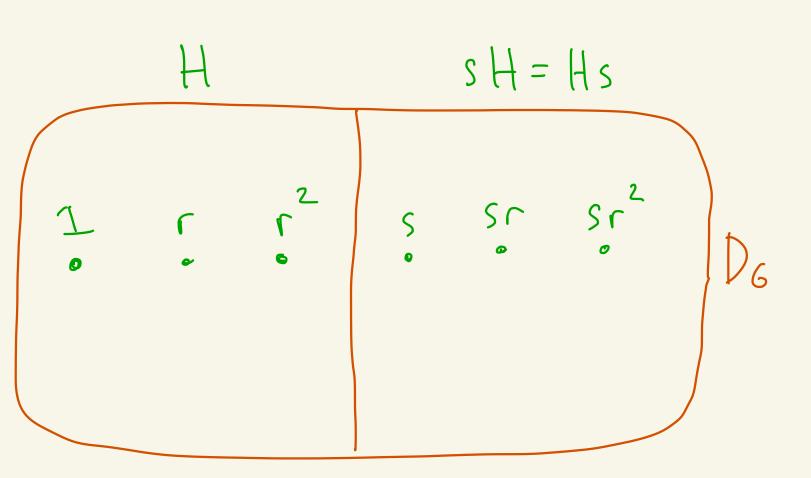
$$rs = sr^2 = sr^3 = sr^2$$

$$r^2s = sr^2 = sr^3 = sr^2$$

$$Hsr^2 = \{1.sr, rsr^2, r^2sr^2\} = \{sr^2, sr, s\}$$

$$L_{2}L_{3} = 2L_{3}L_{5} = 2$$

$$L_{2}L_{3} = 2L_{3}L_{5} = 2L_{5}$$


There are two right corefr:

$$\{2, r, r^2\} = H = Hr = Hr^2$$

 $\{5, 5r, 5r^2\} = Hs = Hsr = Hsr^2$

In this case the left and right cosets are the same.

The group D6 is partitioned by its left or its right corets.

In this case in the same way.

The set of left cosets is $\frac{D_G}{H} = \frac{2}{2}H, sH^{\frac{3}{2}}$

Theorem: Let G be a group and $H \leq G$. Let $a, b \in G$. Then:

- (1) a E a H
- iff baeH (2) aH = bH
- iff a e bH (3) aH = bH
- iff a=bh for some heH (4) aH = bH
- corets of G partien G. (5) The left

That is, G= UgH
gEG

and given any two left cosets αH and bH either $\alpha H \cap bH = \phi$ or aH=bH.

6) If H is finite, then | aH = |H= |Ha|

Proof: DEEH since H ≤ G. Thus, a = ae e aH. (2) (F) Suppose aH = bH By part 1 we know a EaH. Since att=blt this gives a EbH. Thus, a=bh for some h∈ H. Thus, bia=hEH.

(2) Suppose back

Then ba=h for some hell.

Then ba=h for some hell.

Let's show at =bH by showing

Let's show at =bH and bH = att.

both att =bH and bH = att.

Let ZEatt.

Then Z=ah, where h, EH.

So, Z=ah, = bhh, = b(hh,) EbH

in H

since H & G

Thus, aH = 61. Now suppose webH. Then W= bhz where hz EH. So, w= bh2 = ah'h2 = a(h'h2) Ealt in H since H < G

Thus, bH = aH. Therefore aH=bH.

(3) HW

(4) HW

(5) Clearly gH= G for any geG.

Thus,

G = U {9} = U 9H = G. 9EG

So, G= Ustl.

Let all and blt be two left cosets. We want to show that either $\alpha H = bH$ or $\alpha H \wedge bH = \emptyset$. We do this by showing that aH = bH iff aH NbH + Ø. (D) Suppose aH=bH. Then, attnbt=att (C) Suppose aHNbH + Ø. Then there exists ZEaHNbH. Thus, Z=ah, and Z=bhz where $h_1, h_2 \in H$. Now let's show att = btt. Let yeaH. Then y = ahz where hz EH.

Since ah,= Z=bhz we have $\alpha = bhzh_1^{-1}$ Thus, $y = ah_3 = bh_2h_1^{-1}h_3 \in bH$ So, aH = bH. Suppose XEbH. Then X = bhy where hy EH. Since $ah_1 = bh_2$ we have $b = ah_1h_2$ $x = bhy = ah_1h_2h_y \in aH$ Thus, H vi So, bH = aH. Hence alt=bH.

(6) HW

$$E_X: Z_6 = \{5, 7, 2, 3, 4, 5\}$$
 $H = \{3\} = \{5, 3\}$

$$0+H=\{5,3\}=3+H$$

 $1+H=\{7,4\}=4+H$
 $2+H=\{2,5\}=5+H$

0+H	T+H	2+H Z6
0 .		2,
3 .	4.	5.

The set of left cosets is $\frac{\mathbb{Z}_6}{H} = \{\overline{0} + H, \overline{1} + H, \overline{2} + H\}$

Lagranges theorem

Let G be a finite group and $H \leq G$. Then, |H| divides |G|.

proof:

Let 9, H, 92H, ..., 9, H be the distinct left cusets that partition 6. From the theorem, |9,H|=|92H|=...=|9,H|=|H| Thus, |G|= |9,H|+ |92H|+ ...+ |9,H| = | H | + | H | + (11 + | H | $= \Gamma |H|$

Lorollary: If G is a group and [G]=p where p is prime, then Gis cyclic.

Proof: Since p is prime, p > 2. Thus, there exists $X \in G$ where $\chi \neq e$. Consider $H = \langle x \rangle$. Since x + e, we know e, x = H and that 1H1 > 2. By Lagrange, IHI divides [61=p. The only divisors of p are I and p hecarre p is prime. Thus, [H]=P. There fore H=G.

Thus, G=<x> is cyclic

Theorem: Let G be a finite group.

If $x \in G$, then the order of xdivides [G].

Proof: Let $H = \langle x \rangle$.

Then, $H = \{e, x, x^2, ..., x^{m-1}\}$ where

Then, $H = \{e, x, x^2, ..., x^{m-1}\}$ where

So, IHI = M.

So, IHI = M.

So, Lagranges theorem, IHI divider IGI.

So, M divider IGI.

Def: Let G be a group and $H \leq G$.

We say that H is <u>normal</u> if gH = Hg for all $g \in G$.

We write $H \leq G$ for mean that H is

a normal subgroup of G.

$$E_{X}$$
: $D_6 = \{1, r, r^2, s, sr, sr^2\}$
 $H = \langle r \rangle = \{1, r, r^2\}$

previously we saw that:

$$\{1,r,r^2\} = H = rH = r^2H$$

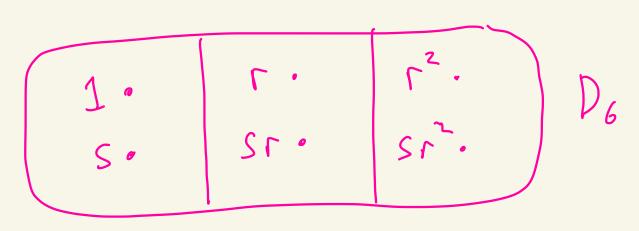
 $\{5,5r,5r^2\} = 5H = 5rH = 5r^2H$

$$\frac{\Gamma ight \ cosets}{\{1,r,r^2\}} = H = Hr = Hr^2$$

$$\{5,sr,sr^2\} = Hs = Hsr^2$$

$$E_{X}: D_6 = \{1, r, r^2, s, sr, sr^2\}$$
 $H = \langle s \rangle = \{1, s \}$

$$H = \{\{1, s\}\} = sH$$
 $rH = \{\{1, s\}\} = \{\{r, s\}\} = \{\{r, s\}\} = \{\{r, s\}\} = srH$
 $rH = \{\{1, s\}\} = \{\{r, s\}\} = \{\{r, s\}\} = srH$
 $r^2H = \{\{r, s\}\} = \{\{r, s\}\} = \{\{r, s\}\} = srH$


So, the left cosets partition D6 as follows:

$$\frac{\text{right cosets}}{\text{H} = \{1, s\} = \text{Hs}}$$

$$\frac{\text{H} = \{1, s\} = \text{Hs}}{\text{Hr} = \{r, sr\} = \text{Hsr}}$$

$$\frac{\text{Hr} = \{r, sr\} = \text{Hsr}}{\text{Hr}^2 = \{r^2, sr^2\} = \text{Hsr}}$$

The right corets partition Do as follows:

The left and right cosets are not the same. Thus, H is not a the same. Subgroup of D6.

Theorem: If G is an abelian group, then all of it's subgroups are normal. proof: Let G be an abelian group. Let H≤G and g∈G. gH={gh|heH}={hg|heH}=Hg. Then,

Thus, H & G.

All subgroups of ZG are normal.

$$\langle \bar{0} \rangle = \{ \bar{0} \}$$

 $\langle \bar{1} \rangle = \langle \bar{5} \rangle = \mathbb{Z}_{6}$
 $\langle \bar{2} \rangle = \langle \bar{4} \rangle = \{ \bar{0}, \bar{2}, \bar{4} \}$
 $\langle \bar{3} \rangle = \{ \bar{0}, \bar{3} \}$

```
Note: When H & G you are able to commute
elements of g past elements of H like
this: gh,=h29
We saw above that H = G.
 Consider X = 5r.
Then, XESH
 We Know sH=Hs since H ≥ G.
 So, XEHs also.
 We have
              in sH
           X = \int_{S}^{\infty} = \int_{S}^{1} = \int_{S}^{2} = \int_{S}^{2}

\begin{cases}
9h_1 \\
9=5 \\
h_1=1
\end{cases}

\begin{cases}
h_2 \\
9=5 \\
h_2=1
\end{cases}

Notation: In the next theorem, we need the following.
Let H \leq G and g \in G. Define
    9Hg'= 2ghg' | he H}.
```

 $\frac{1}{9} + \frac{1}{9} = \frac{1}{9} + \frac{1$

Theorem: Let G be a group and $H \leq G$.

Then the following are equivalent.

(i) H is normal.

(i) G g Hg' \subseteq H for all $g \in G$ (ii) G = G(iii) G = G

Proof:

(D=D@) Assume H is normal, that is gH=Hg for all geb

Fix some geb.

Let yegHg!

Then y=ghg! for some heH.

Since ghegH and gH=Hg there exists

h, where gh=h,g.

Then, y=ghg!=h,gg!=h, EH.

So, gHg! EH.

(253) Assume xHx'=H for all xeG. We must show that H=xHx' for all xeG. Let geG be fixed. Let's show H=gHg'. Let heH.

```
Then, g'hg = g'h(g')'EH + by assumption with x = g'
Thus, g'hg=hz where hz EH.
Then, h=gh,g'egHg'.
Thus, H = 9 Hg?.
(350) Suppose xHx = H for all xEG.
Let g be fixed.
                                assumption with
Let yegH.
Then, y = gh where helt.
By assumption ghgieH and so ghgi=h, where
Thus, y=gh=h,g ∈ Hg.
So, gH=Hg.
Similarly let ZEHg.
Then Z=hg for some hell.
And g'h'g = g'h(g'')'' \in H assumption with x = g''
Su, g-1h'g=hy for some hy EH.
Then, Z=hg=ghy EgH.
Thus, Hg = g H.
Therefore, Hy=gH and H is normal.
```

Theorem: Let G, and G2 be groups. Let $\varphi: G_1 \to G_2$ be a homomorphism. Then, Ker(q) 4 G. Proof: We know Ker (q) ≤ 61.

Let's show that Ker (q) is normal.

Let ge G, and he ker(q). Then, $\varphi(ghg') = \varphi(g)\varphi(h)\varphi(g^{-1}) \longleftrightarrow since$ = \phi(g) e_z \phi(g^{-1}) \leftarrow heker(\phi) $= \varphi(g) \varphi(g^{-1})$ = 9(99-1) $= \varphi(e_i)$ = 62 Su, ghg'Eker(q).

Su, ghg Eker(φ).

Thus, g(Icer(φ))g = ker(φ)

Su, Ker(φ) is normal.

Consider det: GL(2,1R) -> IR*.

We know det is a homomorphism since det (AB) = det (A) det (B).

The Kernel is $Ker(det) = \left\{ A \in GL(2, \mathbb{R}) \mid det(A) = 1 \right\}$ $= SL(2, \mathbb{R})$

Thus, SL(2,1R) & GL(2,1R).

GL(2,R)

$$\begin{pmatrix}
2 & 1 \\
1 & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 \\
-1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1/2 & 5 \\
0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1/2 & 5 \\
0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1/2 & 5 \\
0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1/2 & 5 \\
0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1/2 & 5 \\
0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1/2 & 5 \\
0 & 2
\end{pmatrix}$$

It turns out that if H 4 G then the set of left cosets can be made into a group Using the operation (aH)(bH) = (ab) H. Since there can be multiple ways to represent a left coset we must make sure this operation is well-defined.

Theorem: Let G be a group and H \(\) G. The operation (aH)(bH)=(ab)H on the set ut left cosets G/H is well-defined if and only if It is normal.

(4) Suppose H is a normal subgroup of G. Proof: Consider a,b,c,deb where aH=cH and bH=dH. We must show that (aH)(bH) = (ab) H is equal to (cHI(dH)=(cd)H. Since aH=cH we know a EcH and

so a = ch, where h, EH. Similarly since bH=dH we have b=dhz where hzEH.

Then, ab = chidhz.

Since His normal we know Hd=dH. Thus since hideHd we know hidedH. Hence hid=dh3 for some h3 Etl. Thus, ab=chidhz=cdhzhz EcdH. Since abecdH we know abH=cdH. (5) [Skip this direction in class since not used.] Suppose the operation on left cosets is Well-defined, that is if aH=cH and bH=dH, then abH=cdH. Let's show that H is normal. Let geb and heH. Then, since hH = eH we have g'H = (eH)(g'H) = (hH)(g'H)Well-defined operation Thus, $\vec{g}H = h\vec{g}H$.

So, $hg^{\dagger} \in g^{\dagger}H$.

Thus, $hg^{\dagger} = g^{\dagger}h$, where $h, \in H$.

So, $ghg^{\dagger} = h, \in H$.

We have shown that $ghg^{\dagger} \in H$ We have shown that $ghg^{\dagger} \in H$ for any $g \in G$ and $h \in H$.

Hence H is normal.

G be a group Theorem: Let and H= G. Then, G/H is a group under the operation (aH)(bH)=(ab)HThe identity element is eH=H The inverse of aH is a'H.

Proof:

- 1) Let a, be G. Then, ab EG. Thus, (aH)(bH) = abH E G/H. So, G/H is closed under the Toperation.
- aH, bH, cH & G/H. Then,

$$(aH)[(bH)(cH)] = [aH][bcH]$$

$$= a(bc)H$$

$$= (ab)cH$$

$$= (ab)cH$$

$$= (ab)CH$$

$$= (ab)CH$$

$$= (ah)(bH)(cH)$$

(3) Given
$$\alpha H \in G/H$$
 we have $(\alpha H)(eH) = \alpha eH = \alpha H$
 $(\alpha H)(eH) = e\alpha H = \alpha H$
 $(eH)(\alpha H) = e\alpha H$

(4) Given $aH \in GH$ we have (aH)(a'H) = (aa')H = eH (a'H)(a'H) = (a'a)H = eH

$$Ex: D_6 = \{1, r, r^2, s, sr, sr^2\}$$
 $H = \langle r \rangle = \{1, r, r^2\}$

Left cosets:

$$\frac{1}{1} = \{1, r, r^2\} = r + r^2 +$$

Previously we saw that H = D6.

P ₆ /H	H	sH
H	Н	sH
sH	sH	H

$$(H)(sH) = 1 \cdot sH = sH$$

 $(sH)(sH) = s^2H = 1H = H$
 $(sH)(sH) = (1H)(1H) = H$
 $(H)(H) = (sH)(1H) = sH$
 $(sH)(H) = (sH)(1H) = sH$

The powers of sH are:

$$sH$$

 $(sH)(sH) = s^2H = 2H = H$
 $(sH)(sH) = s^2H = 2H = H$

Ex:
$$\mathbb{Z}_6 = \{5, 7, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$$
 is abelian $H = (3) = \{5, \overline{3}\}$ is a normal subgroup left cosets:

$$0+H=\{0,3\}=3+H$$

 $1+H=\{1,4\}=\{+H$
 $2+H=\{2,5\}=5+H$

$$\mathbb{Z}_{G/H} = \{ \overline{0} + H, T + H, \overline{2} + H \}$$

Here's the group table.

110,07	(
Z6/H	O+H	T+H	2+H	
ō+H	04H	1+1	2+H	
H+T	T+H	<u>2</u> +H	0+H	
Z+H	2+H	Ð+6	1+14	_

ZG/H={ T+H, Z+H} = (a+h)+(b+H)

Here's the grove table

sume example calculations

(0+H)+(2+H)=(0+2)+H=2+H (1+H) +(1+H) = (1+1)+H = 2+H (7+H)+(5+H)=3+H=0+HH+I= H+F= (H+E)+(H+E)

Note that the "powers" of T+H are: T+H (T+H)+(T+H)=Z+H (T+H)+(T+H)=3+H=0+H $Thus, Z_6/H=\langle T+H\rangle$ is cyclic.

Since $|Z_6/H|=3$ we have $Z_6/H\cong Z_3$.

```
EX: Consider
      G = \mathbb{Z}_4 \times \mathbb{Z}_2 = \{ (\bar{o}, \bar{o}), (\bar{o}, \bar{\tau}), (\bar{\tau}, \bar{o}), (\bar{\tau}, \bar{\tau}), (\bar{z}, \bar{o}), (\bar{z}, \bar{\tau}), (\bar{z}, \bar{v}), (\bar{v}, \bar{v}), (\bar{v
                                                                                                                                                                                                                                                                                                            \{17, \bar{c}\}, (\bar{c}, \bar{z})
       H = \langle (\overline{z}, \overline{o}) \rangle = \{ (\overline{z}, \overline{o}), (\overline{o}, \overline{o}) \}.
    G is abelian, thus H = G.
   The left cosets are
                               \{16(5), (6(6))\} = H + (6(6))
                               \{(\bar{o}_{i}\bar{c}),(\bar{o}_{i}\bar{i})\}=H+(\bar{o}_{i}\bar{i})\}
                               \{17(5),(7(5))\}=H+(7(5))
                              (7,7) + H = \{(7,7), (3,7)\}
           Z4xZ2/H= {(0,0)+H, (7,0)+H, (0,7)+H, (1,1)+H}
   So,
   has order 4. With identity (5,5) ttl.
  Is ZyxZz/H cyclic?
     Let's check the orders.
 (0,0)+H
    order 1
[(1-5)+H]+(1-5)+H]=(2-5)+H
    H+(01)
    order 2.
```

$$(\bar{0},\bar{1})+H$$

 $[(\bar{0},\bar{7})+H]+[(\bar{0},\bar{7})+H]=(\bar{0},\bar{2})+H=(\bar{0},\bar{0})+H$
order 2.

$$(T_1T)+H$$

 $[(T_1T)+H]+[(T_1T)+H]=(Z_1Z)+H=(Z_2D)+H=(Z_$